ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

SOME COMMUTATIVITY RESULTS ON CERTAIN RINGS

¹Dr.Y.Madanamohana Reddy,²Prof. G.Shobha Latha ¹Department of Mathematics, Rayalaseema University, Kurnool-518007.AP.India. ²Department of Mathematics, S.K.University, Ananthapuramu- 515003.AP.India.

Abstract:

In this we prove (1) a semi-prime ring *R* satisfying the condition $[xy_z, [xy, yx]] = 0$, is commutative provided Char $R \neq 2$ and also (2) a non-associative 2-torsion free ring with unity 1 satisfying the condition $[x^2y^2-xy, x]=0$ or $[x^2y^2-xy, y] = 0$, then R is commutative. Initially **Gupta** [3] proved that division ring *D* which satisfies the polynomial identity $xy^2x = yx^2y$ for all $x, y \in D$ must be commutative. This was generalized by **Awtar** [5] as "A semi-prime ring *R* satisfying the condition $xy^2x-yx^2y \in Z(R)$ is commutative." **Al-mojil** generalized this theorem by showing that a 2-torsion free semi-prime ring, if xy_z commutes with xy^2x-yx^2y for all $x, y \in R$, is commutative. We generalize this result as "In a 2-torsion free semi-prime ring, if xy_z commutes with xy^2x-yx^2y for all $x, y \in R$, then *R* is commutative. A result proved by **Ashraf and Quadri** [4] is that a semi-prime ring satisfying the condition $(xy)^2-xy \in Z(R)$ is commutative. We generalize

result proved by Ashraf and Quadri [4] is that a semi-prime ring satisfying the condition $(xy)^2 - xy \in Z(R)$ is commutative. We generalize this result by showing that a non-associative ring satisfying either of the conditions $[x^2y^2 - xy, x] = 0$ and $[x^2y^2 - xy, y] = 0$, is commutative provided Char $R \neq 2$.

Keywords: Periodic Ring, Center, Torsion Free Ring, Semi-Prime Ring.

I. INTRODUCTION:

The study of associative and non- associative rings has evoked great interest and assumed importance. The results on associative and non- associative rings in which one does assume some identities in the center have been scattered throughout the literature. Many sufficient conditions are well known under which a given ring becomes commutative. Notable among them are some given by **Jacobson**, **Kaplansky** and Herstein. Many Mathematicians of recent years studied commutativity of certain rings with keen interest. Among these mathematicians **Herstein**, **Bell**, **Johnsen**, **Outcalt**, **Yaqub**, **Quadri and Abu-khuzam** are the ones whose contributions to this field are outstanding.

II. PRELIMINARIES:

Commutator

For every x, y in a ring R satisfying [x,y] = xy-yx then [x,y] is called a commutator

Commutative Ring

For every x, y in a ring R if xy=yx then R is called a commutative ring.

Non-commutative ring is split from the commutative ring, i.e., R is not commutative with respect to multiplication. i.e., we cannot take xy=yx for every x, y in R as an axiom.

Periodic Ring

For positive integers m, n with m(x), n(x) such that $x^m = x^n$ for all x in R then R is called a periodic ring i.e., m=m(x) and n=n(x). Due to Chacron R is periodic if and only if for each $x \in R$, there exists a positive integers k=k(x) and a polynomial $f(\lambda) = f_x(\lambda)$ with integer co-efficient such that $x^k = x^{k+1}f(x)$.

Prime Ring

A ring R is called a prime ring if whenever A and B are ideals of R such that AB = 0 then either A = 0 or B = 0.

Semi Prime Ring

A ring R is semi prime if for any ideal A of R, $A^2 = 0$ implies A = 0. These rings are also referred to as rings free from trivial ideals.

Primitive Ring

A ring R is defined as primitive in case it possesses a regular maximal right ideal, which contains no two-sided ideal of the ring other than the zero ideal.

Division Ring

A ring R is said to be a division ring if its non-zero elements form a group with respect to multiplication.

Center

In a ring R, the center denoted by Z(R) is the set of all elements $x \in R$ such that xy=yx for all $x \in R$. It is important to note that this definition does not depend on the associative of multiplication and in fact, we shall have occasion to deal with derivation of nonassociative algebras.

III. MAIN RESULTS:

Theorem 1.Let *R* be a 2-torsion-free semi-prime ring such that [xyz, [xy, yx]] = 0 for all *x*, *y* in *R*. Then *R* is commutative.

Proof: By Hypothesis.

Simplifying and using (1.4), we obtain

 $2[y^{2}(yx-xy) + (xy-yx)y^{2}]y^{2}z = 2y^{2}z[y^{2}(yx-xy) + (xy-yx)y^{2}]$ But since R is 2-torsion free, so we obtain $[y^{2}(yx - xy) + (xy - yx)y^{2}z = y^{2}z[y^{2}(yx - xy) + (xy - yx)y^{2}]$ $[(xy-yx)y^{2} - y^{2}(xy - yx)]y^{2}z = y^{2}z[(xy - yx)y^{2} - y^{2}(xy - yx)]$

...1.5

...1.6

i.e.,

Replacing z by z + y in (1.5) and using (1.5) we obtain

 $[(xy-yx)y^{2} - y^{2}(xy - yx)]y^{2}z = y^{2}[(xy - yx)y^{2} - y^{2}(xy - yx)]$ i.e., $[[[x, y], y^{2}], y^{3}] = 0$

Let I_r denote the inner derivation with respect to r i.e., $I_r : X \to [r, x]$, then (1.6) becomes $I_{y3}I_{y2}I_y(x) = 0$. Using lemma which is applicable in prime rings we have either $I_{y3}I_{y2}=0$ or $I_y=0$. If $I_{y3}I_{y2}=0$ then for $x, y \in R$. $I_{y3}I_{y2}(x)=0$ Then again by lemma. Either $I_{y3}=0$ or $I_{y2}=0$ i.e., $y^3 \in Z(R)$ or $y^2 \in Z(R)$.

Then in both the cases we have either $[y^3, x] = 0$ or $[y^2, x] = 0$ which by lemma yields that *R* is commutative. Now consider the case $I_y = 0$ which implies

 $I_y(x) = 0$ or xy - yx = 0, i.e., xy - yx.

Thus in all the cases *R* is commutative. Since *R* is isomorphic to subdirect sum of prime ring R_0 each of which as homomorphic image of *R* satisfies the hypothesis imposed on *R* so theorem holds for semi-prime rings also.

Theorem 2.: A non-associative ring with unity 1 satisfying either of the conditions :

(a) $[x^2y^2 - xy, x] = 0$ (b) $[x^2y^2 - xy, y] = 0$ Is commutative provided it is 2-torsion free. **Proof**. By hyhpothesis (a) we have $(x^2y^2 - xy) x = x(x^2y^2 - xy)$...2.1 Replacing y by y + 1 in 2.1 and using it, we obtain $2x(x^2y) = 2(x^2y) x$ Since *R* is 2-torsion free hence $x(x^2y) = (x^2y) x$...2.2 Now replacing x by x + 1 in 2.2 and using it we yield 2x(xy) + xy = 2(xy)x + yx...2.3 Again replacing x by x + 1 and using 2.3 we obtain 2xy = 2yxi.e., 2(xy-yx) = 0. But *R* is 2-torsion free. So we have xy = yx. Thus R is commutative. Hypothesis (b) gives us $(x^2y^2 - xy)y = y(x^2y^2 - xy)$...2.4 Replacing x by x + 1 in 2.4 and using 2.4 we obtain $2(xy^2)y = 2y(xy^2)$ But *R* is 2-torsion free, hence $(xy^2)y = y(xy^2)$ Now replace y by y + 1 in 2.5 and use 2.5 to obtain 2(xy) y + xy = 2y(xy) + yxAgain replacing yby y+1 in 2.6 and using 2.6 we obtain 2(xy - yx) = 0, since *R* is 2-torsion free, this yields xy = yx. Thus *R* is commutative.

REFERENCES:

[1] Abu – Khuazam.H A commutaituvity theorem for periodic rings, Math. Japonic., 32 No.1 (1987), 1-3.

[2] Abu – Khuazam.H, Bell, H.E. and Yaqub, A commutivity theorems for S- unital rings satisfying polynomial identities, Math. J. Okayama university, 22(1980),111-114.

[3] Gupta.V Some remarks on the commutativity of rings, Acta. Math.Acad. Sci. Hung, 36(1980),232-236.

[4] Quadric, M.A., Ashraf, M, and Khan. M.A. A commutativity condition for semi – prime rings II, Bull. Austral. Math. Soc., 33(1986),71-73.

[5] Ram Awtar. A remark on the commutativity of certain rings, Proc. Amer.Math. soc., 41(1973), 370-372.